Hey—we've moved. Visit
The Keyword
for all the latest news and stories from Google
Official Blog
Insights from Googlers into our products, technology, and the Google culture
A new landmark in computer vision
June 22, 2009
Science fiction books and movies have long imagined that computers will someday be able to see and interpret the world. At Google, we think computer vision has tremendous potential benefits for consumers, which is why we're dedicated to research in this area. And today, a Google team is presenting a paper on landmark recognition (think: Statue of Liberty, Eiffel Tower) at the
Computer Vision and Pattern Recognition (CVPR) conference
in Miami, Florida. In the paper, we present a new technology that enables computers to quickly and efficiently identify images of more than 50,000 landmarks from all over the world with 80% accuracy.
To be clear up front, this is a research paper, not a new Google product, but we still think it's cool. For our demonstration, we begin with an unnamed, untagged picture of a landmark, enter its web address into the recognition engine, and
poof
— the computer identifies and names it: "Recognized Landmark: Acropolis, Athens, Greece." Thanks computer.
How did we do it? It wasn't easy. For starters, where do you find a good list of thousands of landmarks? Even if you have that list, where do you get the pictures to develop visual representations of the locations? And how do you pull that source material together in a coherent model that actually works, is fast, and can process an enormous corpus of data? Think about all the different photographs of the
Golden Gate Bridge
you've seen — the different perspectives, lighting conditions and image qualities. Recognizing a landmark can be difficult for a human, let alone a computer.
Our research builds on the vast number of images on the web, the ability to search those images, and advances in object recognition and clustering techniques. First, we generated a list of landmarks relying on two sources: 40 million GPS-tagged photos (from
Picasa
and
Panoramio
) and online tour guide webpages. Next, we found candidate images for each landmark using these sources and
Google Image Search
, which we then "pruned" using efficient image matching and unsupervised clustering techniques. Finally, we developed a highly efficient indexing system for fast image recognition. The following image provides a visual representation of the resulting clustered recognition model:
In the above image, related views of the Acropolis are "clustered" together, allowing for a more efficient image matching system.
While we've gone a long way towards unlocking the information stored in text on the web, there's still much work to be done unlocking the information stored in pixels. This research demonstrates the feasibility of efficient computer vision techniques based on large, noisy datasets. We expect the insights we've gained will lay a useful foundation for future research in computer vision.
If you're interested to learn more about this research, check out the
paper
.
Posted by Jay Yagnik, Head of Computer Vision Research
Labels
accessibility
41
acquisition
26
ads
131
Africa
19
Android
58
apps
419
April 1
4
Asia
39
books + book search
48
commerce
12
computing history
7
crisis response
33
culture
12
developers
120
diversity
35
doodles
68
education and research
144
entrepreneurs at Google
14
Europe
46
faster web
16
free expression
61
google.org
73
googleplus
50
googlers and culture
202
green
102
Latin America
18
maps and earth
194
mobile
124
online safety
19
open source
19
photos
39
policy and issues
139
politics
71
privacy
66
recruiting and hiring
32
scholarships
31
search
505
search quality
24
search trends
118
security
36
small business
31
user experience and usability
41
youtube and video
140
Archive
2016
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2007
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2006
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2005
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2004
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Feed
Google
on
Follow @google
Follow
Give us feedback in our
Product Forums
.